Tag Archives: planetary servo gearbox

China Wpl-160 Model Servo Planetary Reduction Gearbox delta planetary gearbox

Product Description

1. WPL series precision planetary gear speed reducer Model: WPL40, WPL60, WPL90, WPL120, WPL160, WPL200
2. The speed ratio: 3, 4, 5, 7, 9, 10, 15, 20, 25, 30, 35, 40, 50, 64, 70, 80, 100, 150, 200, 250, 350, 400, 500, 700, 1000
3. Stages: Three
Performance and features:
1. Planetary gear transmission interface using doesn’t contain full needle needle bearing, and increase the contact area to improve structural rigidity and output torque;
2. WPL series precision planetary gear reducer, with high precision, high rigidity, high load, high efficiency, high speed ratio, high life, low inertia, low vibration, low noise, low temperature rising, beautiful appearance, structure, light weight, easy installation, accurate positioning, etc, and is suitable for AC servo motor, DC servo motor, stepper motor, hydraulic motor of growth and slow down transmission

Type WPL-40 WPL-60 WPL-90 WPL-120 WPL-160 WPL-200 Ratio Stages
T2N
Rated output torque
(Nm)
10 28 120 220 480 1230 3 1
15 48 150 270 590 1780 4
15 48 150 270 590 1345 5
9 39 110 215 470 745 7
7 19 58 98 260 720 10
10 28 120 220 480 1230 9 2
15 48 150 270 590 1485 15
15 48 150 270 590 2035 20
15 48 150 270 590 1485 25
15 48 150 270 590 2035 30
15 48 150 270 590 1450 35
15 48 150 270 590 1485 40
15 48 150 270 590 1450 50
9 39 110 215 470 840 70
7 19 58 98 260 720 100
15 48 150 270 590 2590 64 3
15 48 150 270 590 2590 80
15 48 150 270 590 2590 100
15 48 150 270 590 2590 150
15 48 150 270 590 1855 200
15 48 150 270 590 2596 250
15 48 150 270 590 1855 350
15 48 150 270 590 1450 400
15 48 150 270 590 1070 500
9 39 110 215 470 1070 700
7 19 58 98 260 1070 1000
emergency stop torque T2not=2T2N
Rotational inertia
(kgm2)
0.031 0.0135 0.77 2.63 12.14 15.6 3 1
0.571 0.093 0.52 1.79 7.78 16.3 4
0.019 0.078 0.45 1.53 6.07 15.4 5
0.017 0.065 0.39 1.32 4.63 16.1 7
0.016 0.065 0.39 1.32 4.63 15.2 10
0.03 0.131 0.74 2.62 12.14 15.9 9 2
0.571 0.077 0.71 2.53 12.35 15 15
0.019 0.075 0.44 1.5 6.65 15.7 20
0.019 0.075 0.44 1.49 5.81 15.3 25
0.017 0.064 0.39 1.3 6.36 15.2 30
0.016 0.064 0.39 1.3 5.28 16.1 35
0.016 0.064 0.39 1.3 5.28 15.2 40
0.016 0.064 0.39 1.3 4.5 15.2 50
0.016 0.064 0.39 1.3 4.5 15.2 70
0.016 0.058 0.31 1.12 3.53 15.2 100
0.019 0.075 0.5 1.5 7.5 15.4 80 3
0.019 0.075 0.44 1.49 7.4 15.4 100
0.016 0.064 0.39 1.3 6.5 15.2 150
0.016 0.064 0.39 1.3 6.2 15.2 200
0.016 0.064 0.39 1.3 5.7 15.2 250
0.016 0.064 0.39 1.3 5.4 15.2 350
0.016 0.064 0.39 1.3 5.4 15.2 400
0.016 0.064 0.39 1.3 5.2 15.2 500
0.016 0.064 0.39 1.3 5.2 15.2 700
0.016 0.064 0.39 1.3 5.2 15.2 1000
backslash
(arcmin)
reduced <5 <3 <3 <3 <5 <10   1
standard <10 <8 <8 <8 <10 <15  
reduced <8 <5 <5 <5 <8 <15   2
standard <12 <10 <10 <10 <10 <18  
reduced <10 <8 <8 <8 <10 <18   3
standard <15 <12 <12 <12 <15 <22  
torsional rigidity
(Nm/arcmin)
0.7 1.8 4.4 9.2 26.7 66.7  
noise dB(A) 55 58 60 65 70 75  
Max.input speed 10000 8000 6000 6000 5000 3500 1-min
Rated input speed 4500 4000 4000 3500 2000 1500 1-min
Max.Radialforce(N) 185 265 400 1240 3700 6700 Stages
Max.Axialforce(N) 150 200 420 1000 3500 3800
Full-load efficiency(%) 96 1
94 2
90 3
 service life (H) 20000  
Weight (Kg) 0.55 1.7 4.5 9 24 42 1
0.68 2.1 5 10.5 30 56 2
0.75 2.5 5.5 13.1 36 71 3

US $300-2,000
/ unit
|
1 unit

(Min. Order)

###

Application: Machinery
Function: Speed Changing, Speed Reduction
Layout: Cycloidal
Hardness: Hardened Tooth Surface
Installation: Vertical Type
Step: Double-Step

###

Customization:

###

Type WPL-40 WPL-60 WPL-90 WPL-120 WPL-160 WPL-200 Ratio Stages
T2N
Rated output torque
(Nm)
10 28 120 220 480 1230 3 1
15 48 150 270 590 1780 4
15 48 150 270 590 1345 5
9 39 110 215 470 745 7
7 19 58 98 260 720 10
10 28 120 220 480 1230 9 2
15 48 150 270 590 1485 15
15 48 150 270 590 2035 20
15 48 150 270 590 1485 25
15 48 150 270 590 2035 30
15 48 150 270 590 1450 35
15 48 150 270 590 1485 40
15 48 150 270 590 1450 50
9 39 110 215 470 840 70
7 19 58 98 260 720 100
15 48 150 270 590 2590 64 3
15 48 150 270 590 2590 80
15 48 150 270 590 2590 100
15 48 150 270 590 2590 150
15 48 150 270 590 1855 200
15 48 150 270 590 2596 250
15 48 150 270 590 1855 350
15 48 150 270 590 1450 400
15 48 150 270 590 1070 500
9 39 110 215 470 1070 700
7 19 58 98 260 1070 1000
emergency stop torque T2not=2T2N
Rotational inertia
(kgm2)
0.031 0.0135 0.77 2.63 12.14 15.6 3 1
0.022 0.093 0.52 1.79 7.78 16.3 4
0.019 0.078 0.45 1.53 6.07 15.4 5
0.017 0.065 0.39 1.32 4.63 16.1 7
0.016 0.065 0.39 1.32 4.63 15.2 10
0.03 0.131 0.74 2.62 12.14 15.9 9 2
0.023 0.077 0.71 2.53 12.35 15 15
0.019 0.075 0.44 1.5 6.65 15.7 20
0.019 0.075 0.44 1.49 5.81 15.3 25
0.017 0.064 0.39 1.3 6.36 15.2 30
0.016 0.064 0.39 1.3 5.28 16.1 35
0.016 0.064 0.39 1.3 5.28 15.2 40
0.016 0.064 0.39 1.3 4.5 15.2 50
0.016 0.064 0.39 1.3 4.5 15.2 70
0.016 0.058 0.31 1.12 3.53 15.2 100
0.019 0.075 0.5 1.5 7.5 15.4 80 3
0.019 0.075 0.44 1.49 7.4 15.4 100
0.016 0.064 0.39 1.3 6.5 15.2 150
0.016 0.064 0.39 1.3 6.2 15.2 200
0.016 0.064 0.39 1.3 5.7 15.2 250
0.016 0.064 0.39 1.3 5.4 15.2 350
0.016 0.064 0.39 1.3 5.4 15.2 400
0.016 0.064 0.39 1.3 5.2 15.2 500
0.016 0.064 0.39 1.3 5.2 15.2 700
0.016 0.064 0.39 1.3 5.2 15.2 1000
backslash
(arcmin)
reduced <5 <3 <3 <3 <5 <10   1
standard <10 <8 <8 <8 <10 <15  
reduced <8 <5 <5 <5 <8 <15   2
standard <12 <10 <10 <10 <10 <18  
reduced <10 <8 <8 <8 <10 <18   3
standard <15 <12 <12 <12 <15 <22  
torsional rigidity
(Nm/arcmin)
0.7 1.8 4.4 9.2 26.7 66.7  
noise dB(A) 55 58 60 65 70 75  
Max.input speed 10000 8000 6000 6000 5000 3500 1-min
Rated input speed 4500 4000 4000 3500 2000 1500 1-min
Max.Radialforce(N) 185 265 400 1240 3700 6700 Stages
Max.Axialforce(N) 150 200 420 1000 3500 3800
Full-load efficiency(%) 96 1
94 2
90 3
 service life (H) 20000  
Weight (Kg) 0.55 1.7 4.5 9 24 42 1
0.68 2.1 5 10.5 30 56 2
0.75 2.5 5.5 13.1 36 71 3
US $300-2,000
/ unit
|
1 unit

(Min. Order)

###

Application: Machinery
Function: Speed Changing, Speed Reduction
Layout: Cycloidal
Hardness: Hardened Tooth Surface
Installation: Vertical Type
Step: Double-Step

###

Customization:

###

Type WPL-40 WPL-60 WPL-90 WPL-120 WPL-160 WPL-200 Ratio Stages
T2N
Rated output torque
(Nm)
10 28 120 220 480 1230 3 1
15 48 150 270 590 1780 4
15 48 150 270 590 1345 5
9 39 110 215 470 745 7
7 19 58 98 260 720 10
10 28 120 220 480 1230 9 2
15 48 150 270 590 1485 15
15 48 150 270 590 2035 20
15 48 150 270 590 1485 25
15 48 150 270 590 2035 30
15 48 150 270 590 1450 35
15 48 150 270 590 1485 40
15 48 150 270 590 1450 50
9 39 110 215 470 840 70
7 19 58 98 260 720 100
15 48 150 270 590 2590 64 3
15 48 150 270 590 2590 80
15 48 150 270 590 2590 100
15 48 150 270 590 2590 150
15 48 150 270 590 1855 200
15 48 150 270 590 2596 250
15 48 150 270 590 1855 350
15 48 150 270 590 1450 400
15 48 150 270 590 1070 500
9 39 110 215 470 1070 700
7 19 58 98 260 1070 1000
emergency stop torque T2not=2T2N
Rotational inertia
(kgm2)
0.031 0.0135 0.77 2.63 12.14 15.6 3 1
0.022 0.093 0.52 1.79 7.78 16.3 4
0.019 0.078 0.45 1.53 6.07 15.4 5
0.017 0.065 0.39 1.32 4.63 16.1 7
0.016 0.065 0.39 1.32 4.63 15.2 10
0.03 0.131 0.74 2.62 12.14 15.9 9 2
0.023 0.077 0.71 2.53 12.35 15 15
0.019 0.075 0.44 1.5 6.65 15.7 20
0.019 0.075 0.44 1.49 5.81 15.3 25
0.017 0.064 0.39 1.3 6.36 15.2 30
0.016 0.064 0.39 1.3 5.28 16.1 35
0.016 0.064 0.39 1.3 5.28 15.2 40
0.016 0.064 0.39 1.3 4.5 15.2 50
0.016 0.064 0.39 1.3 4.5 15.2 70
0.016 0.058 0.31 1.12 3.53 15.2 100
0.019 0.075 0.5 1.5 7.5 15.4 80 3
0.019 0.075 0.44 1.49 7.4 15.4 100
0.016 0.064 0.39 1.3 6.5 15.2 150
0.016 0.064 0.39 1.3 6.2 15.2 200
0.016 0.064 0.39 1.3 5.7 15.2 250
0.016 0.064 0.39 1.3 5.4 15.2 350
0.016 0.064 0.39 1.3 5.4 15.2 400
0.016 0.064 0.39 1.3 5.2 15.2 500
0.016 0.064 0.39 1.3 5.2 15.2 700
0.016 0.064 0.39 1.3 5.2 15.2 1000
backslash
(arcmin)
reduced <5 <3 <3 <3 <5 <10   1
standard <10 <8 <8 <8 <10 <15  
reduced <8 <5 <5 <5 <8 <15   2
standard <12 <10 <10 <10 <10 <18  
reduced <10 <8 <8 <8 <10 <18   3
standard <15 <12 <12 <12 <15 <22  
torsional rigidity
(Nm/arcmin)
0.7 1.8 4.4 9.2 26.7 66.7  
noise dB(A) 55 58 60 65 70 75  
Max.input speed 10000 8000 6000 6000 5000 3500 1-min
Rated input speed 4500 4000 4000 3500 2000 1500 1-min
Max.Radialforce(N) 185 265 400 1240 3700 6700 Stages
Max.Axialforce(N) 150 200 420 1000 3500 3800
Full-load efficiency(%) 96 1
94 2
90 3
 service life (H) 20000  
Weight (Kg) 0.55 1.7 4.5 9 24 42 1
0.68 2.1 5 10.5 30 56 2
0.75 2.5 5.5 13.1 36 71 3

Planetary Gearbox Components

The basic components of a planetary gearset are an input, output, and stationary position. Different types of planetary gearboxes will have different output ratios and torques. A leading company for planetary gearbox design, CZPT, provides the necessary components. These components can vary in both male and female shafts and come with a variety of modular options. Here are a few things to consider about each component.

CFHK Series

The CFHK Series is a multistage planetary gearbox that contains multiple planetary gears. The multiple teeth of each planetary gear mesh simultaneously during operation to increase the transmittable torque. The gears are case hardened and ground, and the ratios of the planetary gears are integers. They were first functionally described by Leonardo da Vinci in 1490. Today, the CFHK Series is a favorite among automotive engineers and manufacturers.
The CH Series offers high accuracy with a compact design and case hardened, hypoid, and helical gearing. These gearboxes are also available in the CFXR series, with low backlash and friction. These planetary gearboxes are designed to provide high torque and high precision in a variety of applications. In addition, the CFXR series features 100% helical gearing and low backlash.
The CFHK Series features a sun gear that drives the next stage. These gears can be put in series or serially in the same housing. In some cases, the output shaft of the first stage becomes the input shaft of the second stage. In addition, ring gears are also used as structural parts of smaller gearboxes. An example of a planetary gearbox is the pencil sharpener mechanism. The pencil is placed on an axis that is set on a sun gear. The sun gear drives the next planet stage.
A planetary gear unit’s gear ratio is determined by the number of teeth in the sun gear and ring gear. The smaller the sun gear, the smaller the ratio between the sun gear and planet gears. The largest gear ratio in a planetary gear unit is 10:1. A higher number of teeth increases the transmission ratio. In order to maximize torque, the planetary gears must be rearranged. A smaller sun gear will have higher torque than a large ring gear.
planetarygearbox

CFX Series

The HPN Harmonic Planetary(r) Series planetary gearboxes offer a low-cost solution with high-performance and high-reliability. This modular design is easy to install and requires very little maintenance. Its planetary design and full complement of needle rollers allow for extended life and quiet operation. In addition, the HPN Harmonic Planetary(r) Series is available in a range of sizes.
The compact size and high-speed design of planetary gearboxes results in excellent heat dissipation. However, high-speed or sustained performance applications may require lubricants. A planetary gearbox will have smaller minimum steps to minimize noise and vibration. Planetary gears will give you the highest level of efficiency while minimizing noise. As a result, they can provide high-quality 3D prints.
A planetary gear train is composed of a ring gear and planet gears, each supported by a carrier. A ring gear is pink, while the sun gear is red. The sun gear and carrier rotate around each other at a 45-degree angle. This is also known as an epicyclic gear. Planetary gearboxes are often found in space-constrained applications. The CFX Series features a compact design and excellent performance.
The CFX Series features a robust design that is easy to install. Its compact size makes installation of planetary gearboxes easier and faster. They are available in three different configurations for continuous, intermittent, and counter-clockwise operation. The CFX Series offers the perfect solution for your accelerating needs. They’re a great solution for any automotive or industrial application. You can easily configure the CFX Series to meet your specific requirements.

CAP Series

The Candy Controls CAP Series is a new generation of compact, precision planetary gearboxes that combine high torques with low backlash and exceptional wear resistance. This rotary flange planetary gearbox is ideal for a variety of industrial, mining and marine applications. Its modular construction enables users to easily mount different stages, hydraulic or electric motors, and different types of gears. Its CPH Series features an extremely rigid alloy steel housing, carburized gears, and induction hardened gears.
The CAP Series utilizes multiple planetary gears for high torque transmission. The number of planetary gears is not fixed, but most planetary gearboxes utilize at least three. The larger the number of planetary gears, the higher the transmittable torque. A planetary gearbox is composed of multiple planetary gears with a meshing action that occurs simultaneously during operation. The result is a higher efficiency and a smoother, quieter operation than a conventional gearbox.
The VersaPlanetary range features modular design for easy installation. This system includes mounting plates for typical FIRST (r) Robotics Competition motors. The mounting plates are designed to fit each motor. These planetary gearboxes are compatible with various types of motors, from small electric motors to large, heavy duty ones. They are also compatible with a variety of mounting systems, including CIM motors.
planetarygearbox

CAPK Series

The CZPT APK Series is a high precision, rotary flange style planetary gearbox. Its case hardened and ground gears are designed to provide excellent wear resistance, low backlash, and excellent precision. The CAPK Series offers high axial and moment load capacities in a compact housing. CZPT is the world leader in the production of planetary gearboxes. The CAPK Series features an array of high-quality, innovative features.
CZPT SMART Lubrication technology is used to keep the gears well-lubricated and reduce noise and vibration. The planetary gearbox’s 3-gear design is ideal for DIY CNC robotics. This series has a long history of quality, and CZPT uses only the best components. The CZPT 3:1 High Precision Planetary Gearbox is an excellent choice for CNC Robotics and other applications.
A multi-stage planetary gearbox combines individual ratios for a greater number of ratios. Additional planetary gears increase the transmittable torque. The direction of the output and drive shaft are always identical. The CAPK Series features a high-quality, durable construction. They are made from stainless steel and offer a long-term warranty. They are the best choice for industrial and commercial applications. While planetary gears are more expensive, they are highly efficient.

CFH Series

The Candy CFH Series planetary gearboxes offer the benefits of a modular design and a low backlash. They offer a variety of size options and excellent durability. This planetary gearbox is compact and wear resistant. The CFH Series planetary gearbox has a carburized, induction hardened gears and a rigid alloy steel housing. Its low backlash and precision make it an excellent choice for industrial applications.
The CFH Series planetary gearbox is a highly efficient, high-speed helical gear. The compact design of this gearbox results in high heat dissipation and low mass inertia. Planet carrier bearings experience significant lateral forces from the transmission of torque. As a result, radial and axial forces oppose each other. The result is that the torque is distributed over three gears, reducing noise, vibration, and wear.
The planetary gearbox has three main components: a sun gear (also known as the input gear), a ring gear, and two planet gears. These are connected by a carrier that rotates about a 45-degree clockwise axis. The CFH Series of gears is available in triple and double stages. They can also be used in electric motors. As a result, the CFH Series is highly versatile.
The CFH Series of planetary gearboxes can be found in all kinds of applications, including automotive transmissions. Their compact design and high-performance performance make them a popular choice for space-constrained applications. This gearbox has several benefits and is a great alternative to a conventional helical gearbox. These gearboxes are highly effective for reducing torque and speed, and are compact enough to fit in most applications.
planetarygearbox

CZPT

If you need a high-quality planetary gearbox, the CZPT Planetary Series is the right choice. This Italian company designs and manufactures gearboxes in its San Polo d’Enza, Italy, facility with 11 branch offices and three production facilities. The company is attempting to replicate the success of the Italian Super Car industry, which has gained global recognition. The company provides a range of gearboxes for use in heavy industry, agriculture, offshore, aerial and marine work.
With over 40 years of experience, CZPT manufactures a wide range of high-quality gearboxes. From bevel-helical units to Helical units, wheel gears and negative brakes, the company has been manufacturing quality components for many industries. CZPT is a trusted Australian distributor of CZPT gear components. The company is dedicated to providing the best planetary gears for every industry.
If your CZPT Planetary gearbox is malfunctioning, you can have it repaired quickly and easily. The company uses quality materials and a variety of sizes and output ratios to cater to the most demanding applications. In addition, you can customize your gearbox to suit your specific needs. CZPT Planetary Gearboxes are highly versatile and customizable, offering infinite scalability.

China Wpl-160 Model Servo Planetary Reduction Gearbox     delta planetary gearboxChina Wpl-160 Model Servo Planetary Reduction Gearbox     delta planetary gearbox
editor by czh2022-11-27

China Sigriner High Precision Planetary Reducer, planetary gearbox, Economical Right-Angle Output Planetary Gearbox,  high torque, specially equipped with servo motor nema 23 planetary gearbox

Product Description

PLDR/PLDR+60 Level 2

STAGE Level Level 2
Reduction ratio i 15 16 20 25 30 35 40 50 60 70 80 100
Rated output torque T2N Nm 40 42 45 56 53 50 46 55 52 50 42 42
in.lb 370 372 384 475 465 443 385 470 460 443 372 372
Emergency braking torque
Allow 1000 times in the working life of the gearbox
T2NOt Nm 3 x NOM.Output
in.lb
Rated input speed
(T2N, 20°C ambient temperature)
N 1n rpm 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000
Maximum input speed n 1max rpm 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000
Maximum return clearance jt arcmin PLDR60≤8ARCMIN   PLDR+60≤5ARCMIN  Custom made≤3ARCMIN
No-load torque
(nt=3000rmp, gearbox 20°C)
T 012 Nm 0.4 0.5 0.3 0.5 0.4 0.3 0.3 0.3 0.3 0.4 0.4 0.3
in.lb 3.5 4.4 2.7 4.4 3.5 2.7 2.7 2.7 2.7 3.5 3.5 2.7
Torsional rigidity C t21 Nm/ arcmin 4
in.lb / arcmin 31
Maximum radial force F 2AMAX N 1600
lbf 360
Maximum axial force F 3RMAX N 1600
  lbf 360
Maximum roll torque M 2KMax Nm 152
  in.lb 1345
Working life Lh hr ≥20000
Efficiency at full load η % 92
Ambient temperature ºC -15~40
F 5~104
The maximum allowable temperature of the shell ºC +90
F 194
Lubricating   Life Lubrication
The direction of rotation   Input and output in the same direction
Protection level   IP65
Installation direction   Any
Working noise              (i=10 and n1=3000rpm no load) LPA              dB(A) ≤58
Rotary inertia J1 Kg.cm2 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9
10-3in.lb.s2 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80

 

  Quick selection of size
  PLDR(figure: i=4)                                                                                                     PLDR/PLDRHIGH PRECISION(figure: i=4)            
  Applicable to periodic working days (ED≤60%)                                                       Applicable to periodic working days (ED≤60%)

Design & technology

Technical services:

  • According to the relevant parameters provided by the customer, the CZPT engineering software is used to create the motion load curve diagram of the mechanism equipment to obtain the corresponding parameters and derive the motion load curve. Intuitively display important parameters and load indexes in the transmission system to help customers carry out reasonable structural design.
  • SIGRINER provides a motor database from 500 servo motor manufacturers worldwide

Customer training:
We are honored to provide you with our applied computing and transmission design expertise. We can provide relevant training according to your needs.  

Technical testing center

Industry application

  • We provide fast supply and strong support all over the world through a complete sales and service network
  • With years of rich experience, our authoritative experts provide market-leading consulting services for various industrial sectors
  • Robotics, automation and manipulator technology

A variety of servo gearboxes and mechanical transmission systems, from economical to high-end models; can be applied to various robots and their auxiliary axes, such as transmission shafts and station control devices

  • Printing machine 

Innovative gearbox ensures stability, synchronization accuracy and long-term accuracy even at high speeds
The perfect solution for high-quality printing processes and other continuous duty applications
Option: integrated sensor for monitoring paper tension and similar parameters

  • Machine tools and manufacturing systems

High precision, stable operation and high efficiency are all derived from stable, zero backlash and high rigidity mechanical system solutions, such as the application of products on feed, rotation and auxiliary axes

  • Food and packaging machinery 

A series of gearboxes specially designed for various shafts used in the field of packaging technology (including gearboxes with anti-corrosion design)-can maximize work efficiency, mechanical flexibility and cycle speed

  • Textile machine 

Features of CZPT Precision planetary gearbox

  • Very high power density, torque increased by 40%
  • Easy motor installation, optional installation with length compensation
  • Flexible installation, the gearbox can be installed vertically, horizontally, and up or down together with the driven shaft
  • Very high positioning accuracy, return clearance is less than arc minutes
  • Through helical gear meshing, the operation is stable, and the running noise is less than 50dB-A
  • The world’s leading life expectancy, and the raw materials and mechanism of the seal ring have been optimized

 

US $40-230
/ Piece
|
5 Pieces

(Min. Order)

###

Application: Motor, Machinery
Hardness: Hardened Tooth Surface
Installation: 90 Degree
Layout: Coaxial
Gear Shape: Conical – Cylindrical Gear
Type: Planetary Gear Reducer

###

STAGE Level Level 2
Reduction ratio i 15 16 20 25 30 35 40 50 60 70 80 100
Rated output torque T2N Nm 40 42 45 56 53 50 46 55 52 50 42 42
in.lb 370 372 384 475 465 443 385 470 460 443 372 372
Emergency braking torque
Allow 1000 times in the working life of the gearbox
T2NOt Nm 3 x NOM.Output
in.lb
Rated input speed
(T2N, 20°C ambient temperature)
N 1n rpm 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000
Maximum input speed n 1max rpm 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000
Maximum return clearance jt arcmin PLDR60≤8ARCMIN   PLDR+60≤5ARCMIN  Custom made≤3ARCMIN
No-load torque
(nt=3000rmp, gearbox 20°C)
T 012 Nm 0.4 0.5 0.3 0.5 0.4 0.3 0.3 0.3 0.3 0.4 0.4 0.3
in.lb 3.5 4.4 2.7 4.4 3.5 2.7 2.7 2.7 2.7 3.5 3.5 2.7
Torsional rigidity C t21 Nm/ arcmin 4
in.lb / arcmin 31
Maximum radial force F 2AMAX N 1600
lbf 360
Maximum axial force F 3RMAX N 1600
  lbf 360
Maximum roll torque M 2KMax Nm 152
  in.lb 1345
Working life Lh hr ≥20000
Efficiency at full load η % 92
Ambient temperature ºC -15~40
F 5~104
The maximum allowable temperature of the shell ºC +90
F 194
Lubricating   Life Lubrication
The direction of rotation   Input and output in the same direction
Protection level   IP65
Installation direction   Any
Working noise              (i=10 and n1=3000rpm no load) LPA              dB(A) ≤58
Rotary inertia J1 Kg.cm2 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9
10-3in.lb.s2 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80

###

US $40-230
/ Piece
|
5 Pieces

(Min. Order)

###

Application: Motor, Machinery
Hardness: Hardened Tooth Surface
Installation: 90 Degree
Layout: Coaxial
Gear Shape: Conical – Cylindrical Gear
Type: Planetary Gear Reducer

###

STAGE Level Level 2
Reduction ratio i 15 16 20 25 30 35 40 50 60 70 80 100
Rated output torque T2N Nm 40 42 45 56 53 50 46 55 52 50 42 42
in.lb 370 372 384 475 465 443 385 470 460 443 372 372
Emergency braking torque
Allow 1000 times in the working life of the gearbox
T2NOt Nm 3 x NOM.Output
in.lb
Rated input speed
(T2N, 20°C ambient temperature)
N 1n rpm 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000
Maximum input speed n 1max rpm 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000
Maximum return clearance jt arcmin PLDR60≤8ARCMIN   PLDR+60≤5ARCMIN  Custom made≤3ARCMIN
No-load torque
(nt=3000rmp, gearbox 20°C)
T 012 Nm 0.4 0.5 0.3 0.5 0.4 0.3 0.3 0.3 0.3 0.4 0.4 0.3
in.lb 3.5 4.4 2.7 4.4 3.5 2.7 2.7 2.7 2.7 3.5 3.5 2.7
Torsional rigidity C t21 Nm/ arcmin 4
in.lb / arcmin 31
Maximum radial force F 2AMAX N 1600
lbf 360
Maximum axial force F 3RMAX N 1600
  lbf 360
Maximum roll torque M 2KMax Nm 152
  in.lb 1345
Working life Lh hr ≥20000
Efficiency at full load η % 92
Ambient temperature ºC -15~40
F 5~104
The maximum allowable temperature of the shell ºC +90
F 194
Lubricating   Life Lubrication
The direction of rotation   Input and output in the same direction
Protection level   IP65
Installation direction   Any
Working noise              (i=10 and n1=3000rpm no load) LPA              dB(A) ≤58
Rotary inertia J1 Kg.cm2 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9
10-3in.lb.s2 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80

###

The Basics of a Planetary Gearbox

The basic model of a planetary gearbox is a highly efficient transmission that transmits nearly ninety percent of the power it receives. The basic planetary gearbox comes in three basic types: Inline, Helical, and Spur. Below, we will discuss the differences between each of them and which one is better for your needs. A planetary gearbox is an important part of any engine and may be the perfect choice for your vehicle.
planetarygearbox

Inline planetary gearbox

An inline planetary gearbox has an inline arrangement of gears that enables the transfer of power. Its design makes it stable and reliable, and the space and weight-saving benefits make it a popular choice for many applications. Planetary gearboxes have low inertia, high torque, and a wide range of reduction ratios, which make them a versatile choice for many industries. To find out more about this type of gearbox, read about its construction and specifications.
A planetary gearbox is composed of two parts: a sun gear (also called the central or input gear), and two planet gears (also called outer gears). These gears are connected to each other via a carrier. In order to get the best performance from your gearbox, it’s important to find a model with the features and benefits required for your application. Also, be sure to check out the delivery time, global availability, and customer service of your selected constructor. A few constructors are faster than others and have the ability to respond quickly, while others can deliver every single planetary gearbox out of stock.
Whether you’re using an inline planetary gearbox for your car’s transmission, or you’re building a new machine, it’s important to choose the right size for your application. The most common ratio is five:1, but an inline gearbox can be as high as 1000:1! The torque range is between 250-950 lb-in for continuous torque, and up to 5800 lb-in for yield torque. Some companies even offer custom shafts if you need them to fit a specific application.
Inline planetary gearboxes have a high ratio of helical rotation and are useful for applications where space is limited. Their low-backlash design allows them to handle high torques and high accelerations without backlash. Despite their compact size, planetary gear systems also have high single-stage reduction ratios, a feature that makes them ideal for a variety of industrial applications. They can also be connected for high reduction ratios.
An inline planetary gearbox can be used in many applications, from small tools to heavy industrial machinery. Its basic design includes three components: an input gear pair, an output gear pair, and a stationary position. Some planetary gearbox designs also include additional gear sets that can provide a slight offset between input and output. A planetary gearbox may also contain multiple bearings, which make the assembly more robust and reliable.
Inline planetary gear reducers are commonly used in industrial settings to slow down an electric motor. They are able to multiply torque, which means they can reduce the input speed to a level where the mechanical devices inside the motor can function properly. This type of gear reducer also has a low clearance, which makes it ideal for machines with high torque. However, you should consider the amount of torque required in your application before you make a purchase.
planetarygearbox

Helical planetary gearbox

A helical planetary gearbox is a type of mechanical system. The gears are connected by joints to the carrier that holds the planets stationary. The sun gear serves as an input to the other gears, and the planet gears rotate at a rate that depends on the number of teeth in each gear. The ratio between these gears is -Ns/Np, and the number of teeth in the ring is N r, N s, and N p.
Another type of planetary gearbox uses multiple helical axes to distribute the load. This design also offers high stiffness and low backlash, which is important for applications involving frequent start-stop cycles and rotational direction changes. It also features a compact design and low mass inertia. A helical planetary gearbox can be used for a wide range of applications. Listed below are some of the benefits of helical gear technology.
The basic design of a helical planetary gear is based on the principle of stepping planets. This concept eliminates the need for timing marks and restrictive assembly conditions. The planetary gear’s helical shape can be modified to achieve a greater transmission ratio in an equal or smaller volume. For example, a 50-T ring gear will yield the same effect as a 100-T ring gear.
In addition to the helical axis, a helical planetary gearbox also has a wide variety of secondary features that are critical to torque transmission. For instance, compact needle roller bearings are appropriate for a helical planetary gearbox because of their low-profile design and small space. However, a tapered roller bearing is better suited to handling high axial forces. In general, a helical planetary gearbox will have a higher efficiency rate and lower noise levels.
A helical planetary gearbox will have a number of components that can vary in size and shape. They will include a sun gear and many planetary parts. The central sun gear will take a low-torque input and will run multiple external gears to increase the torque and speed. This basic model of a planetary gearbox is highly efficient, transferring 97% of the power input. There are three main types of planetary gearboxes: the cylindrical planetary gearbox, the helical planetary gearbox, and the helical wormwheel.
The CZPT is a good example of an entry-level helical planetary gearbox. It is extremely reliable and aimed at providing torque in quiet applications with high precision. The Access series is another option, which is designed to meet the needs of the low-backlash planetary gearbox market. It features helical planetary gears with five to eight arc-minutes backlash, and is built on a monobloc housing.
A helical planetary gearbox is widely used in 3D printing. They are lightweight and can provide a high gear ratio. In addition to their low weight and high efficiency, some people have installed them into 3D printers to improve the accuracy of their designs. And in addition to 3D printing, helical gears are used in many industrial applications. If you’re thinking about purchasing one, you should know what the benefits are.
planetarygearbox

Spur planetary gearbox

There are many advantages to a spur planetary gearbox, from its compact design and low cost to its unmatched power transmission capacity per unit volume. Planetary gears have high efficiency per stage and can achieve up to 95% efficiency, depending on the ratio. Planet gears are mounted on a joint carrier, and the output rotation speed is slower than the drive rotation speed, which leads to increased torque. The higher the gear wheels, the more torque the unit can produce.
A spur planetary gearbox incorporates multiple other gear sets that must have helical teeth. These other gear sets must be helical, and the motor must be aligned with the driven parts. The spur gears are the most efficient type of planetary gear, as their teeth are symmetrical, which means no axial forces are generated. The difference between a spur and a planetary gearbox is its shape.
The right angle spur planetary gearbox is a versatile design with a spiral bevel gear that provides superior smoothness and quiet operation. This gearhead is case-hardened and ground to increase its efficiency. These gears can be purchased in 3-100 ratios. Spur planetary gearboxes can also have ISO rotary flanges, keyed shafts, DIN splines, or hollow compression connections.
A spur planetary gearbox utilizes spur gears around the circumference of the mechanism. The spur gears rotate between gears that have internal and external teeth. Because of this, the angular velocity of the spur gear differential carrier is the average of the ring gears and sun gears. A spur gearbox can also be considered a compound planetary gear. It is typically used for servo applications. Unlike spur gears, helical planetary gears are easier to maintain and have lower noise levels.
The most notable difference between a spur planetary gearbox and a planetary gearhead is the lubrication of the pinion and the spur gear head. A spur gear head is less complex, but cannot handle the same amount of load as a planetary gearhead. Both types can achieve the same backlash, but a planetary gearhead has better lubrication retention than a spur gear. It can run at higher speeds without excessive lubrication, while a spur gear drive is more efficient at low speeds. The reduction ratio of a planetary gearhead is near unity while that of a planetary gear head is many thousand to one.
A planetary gearbox has many applications. Plastic machinery, goods & personnel lifts, and machine tools are all prime examples of these types of gearing systems. Other industries that use these gears include wind turbines and sugar crystallizers, as well as steel and sugar mills. And of course, the use of planetary gears is not limited to these industries. It is used in many different ways, including slewing drives, mill drive, and derrick & dockyard cranes

China Sigriner High Precision Planetary Reducer, planetary gearbox, Economical Right-Angle Output Planetary Gearbox,  high torque, specially equipped with servo motor     nema 23 planetary gearboxChina Sigriner High Precision Planetary Reducer, planetary gearbox, Economical Right-Angle Output Planetary Gearbox,  high torque, specially equipped with servo motor     nema 23 planetary gearbox
editor by czh2022-11-26

China high quality Factory Wholesale 90 Degree Right Angle Precision Planetary Gear Reducer Servo Motor Gearbox planetary gearbox efficiency

Warranty: 1 Year
Applicable Industries: Garment Shops, Building Material Shops, Manufacturing Plant, Machinery Repair Shops, Food & Beverage Factory, Home Use, Retail, Printing Shops, Construction works , Energy & Mining, Food & Beverage Shops, Other
Weight (KG): 8 KG
Customized support: OEM, ODM
Gearing Arrangement: Planetary
Output Torque: 10~2200Nm
Input Speed: 3000~6000rpm
Output Speed: 3~2000rpm
Efficiency: 95%
Ratio: 3 ~ 100
Color: Black or Blue
Output Type: shaft or hollow
Packing: Carton or wooden case
Heat treatment: Yes
Lubricant: Synthetic
Customization: Support
Packaging Details: Carton or Wooden case
Port: ZheJiang Port

Product Paramrter TRANS AB series planetary gearbox is the most popular servo gearbox. With helical gears and integrated output planetary carrier, TRANS AB series planetary gearboxes have played the advantages of high precision, low noise, and high efficiency up to 95%. AB Series is a kind of super high precision and super high efficient planetary gearbox, with double support output, long span, high stability, wide surface of the sun gear and planetary gear, larger related technical parameters to accomplish high-intensity work. All gears inside the TRANS servo planetary gearbox are helical design, high bite rate, smooth continuous operation, low noise, low backlash. Integrated design of inner ring and shell, high precision, high wear resistance. Integrated connection board design makes it perfectly matches with all kinds of servo motors, and stepper motors perfectly. The lowest backlash, as high as 95% efficiency and lifetime lubrication, makes the TRANS helical gearbox the best choice for customers.TRANS MB series planetary gearbox for servo motor is a good alternative gearbox to AB series of APEX gearbox. We have many customers who before used Apex planetary gearbox or spiral bevel gearbox now choose our MB gearbox or our right angle gearbox AT series in the category of the 90-degree gearbox.Planetary gearbox models of Apex Dynamics: AB042 / AB060 / AB060A / AB090 / AB090A / AB115 / AB115A / AB142 / AB142A / AB180 / AB220

Efficiency95%
Ratio3 ~ 100
ColorBlack or Blue
Output Typeshaft or hollow
PackingCarton or wooden case
Heat treatmentYes
LubricantSynthetic
CustomizationSupport
Product Show Product Specifications Related Products Company Profile Packaging and Shipping FAQ

Benefits of a Planetary Gearbox With Output Shaft

The output shaft of a Planetary Gearbox connects to the driven wheels, while the input shaft comes from the engine. These gears are interlinked and create a wide range of gear reductions, which are necessary to get a vehicle rolling comfortably. Gear reductions are the place where the various “gears” are located. Here are some examples. They can help you determine what you need for your vehicle. You might also want to learn about planetary gears.
planetarygearbox

Planetary gearboxes

Modern cars are most likely equipped with planetary gearboxes. If you’re unsure if your vehicle uses planetary gears, you should first consult your car’s owner’s manual. If not, contact your dealership’s service department for more information. Otherwise, you can do a quick search on the internet to find out whether your car has a planetary gearbox. These gearboxes are generally more complex than ordinary gears. Additionally, they are equipped with more parts and require lubrication.
In addition to their low noise levels, planetary gearboxes are also remarkably efficient at transmission. These features make them ideal for applications requiring high torque and small footprints. Unfortunately, there are many different types of planetary gearboxes on the market, making it difficult to find the right one. The following article will give you some guidelines to help you choose the right planetary gearbox for your needs. Let’s take a look!

Planetary gears

A planetary gearbox has two main components: the sun gear (also known as the central or input) and the planet gears (also known as outer or peripheral). These gears are connected together by a carrier to the output shaft of the machine. In some applications, it is necessary to use a planetary gearbox with lubrication to prevent wear and tear. A planetary gearbox also has a small ring gear that helps hold the planet gears together.
The main advantage of a planetary gearbox is that it uses several teeth that engage at once, allowing for high-speed reduction with a small number of gears. Because the gears are relatively small, they have lower inertia than their larger counterparts. Planetary gearboxes are compact, which makes them popular for space-constrained applications. Because of their compact size and efficiency, planetary gearboxes are also commonly used in motor vehicles.

Planetary gearboxes with output shaft

For high-speed, dynamic applications, planetary gearbox units with output shaft provide the optimal solution. Thanks to their low inertia, these gearheads deliver superior performance in many industrial applications. Additionally, their wide range of variants allows users to select the perfect product for their application. This article examines some of the key benefits of planetary gearboxes with output shaft. Read on to learn more.
The planetary gearbox has two major components: a sun gear and planet gears. The sun gear is usually the input gear, while the planet gears are located at the outer edges of the system casing. Planet gears are held together by a carrier that is connected to the output shaft. Before choosing a particular gearbox for your application, make sure that you check the specific requirements and the environment to which the unit will be subjected.
A planetary gearbox has less stages of gears, and thus lower backlash compared to spur gearboxes. Backlash is lost motion that occurs when the teeth of the gears are out of perfect alignment. This problem is common in all gears, but is significantly less in planetary gearboxes. As such, planetary gearboxes are more efficient. They can also be customized according to the specific engine model and motor flange.
planetarygearbox

Planetary gearboxes with carrier

A planetary gearbox is a type of gearbox with three or more stages. They have a sun gear, which is usually the input gear, and planet gears, also called the outer gears. The carrier that connects the planet gears to the output shaft is called a ring gear. A planetary gearbox is generally designed to meet specific application and environmental requirements, but there are some factors to consider when choosing one.
The compact footprint of planetary gear sets results in high heat dissipation. This can be a problem in applications with sustained performance or high speeds. As a result, planetary gear sets often include lubricants, which present a cooling effect while also reducing noise and vibration. Some planetary gears even feature a carrier to make the installation process easier. Here are some things to keep in mind when choosing a planetary gear set.
Planetary gearboxes with carrier have several advantages over other types of gearboxes. Unlike conventional gearboxes, planetary gears have a common central shaft, and the tangential forces between the gears cancel out at the center of the ring gear. Because of this, planetary gearboxes are commonly used in input/output applications, and their compact size allows for a wide range of gear reductions. These gears can also produce higher torque density.

Planetary gearboxes with traction

Planetary gears are similar to the planetary system, in that each pinion rotates around a sun gear. The output of the planetary gear unit is lower than the drive rotation speed, but the torque is higher. As the number of planet gear wheels increases, so does the torque. Planetary gear systems contain three to four planet gears, and each is in constant mesh with the others. Power applied to any one member rotates the entire assembly.
Typical applications for planetary gear sets include high-precision motion control. In these applications, high torque, torsional stiffness, and low backlash are required. Planetary gear sets are also ideal for motors with higher speeds. A number of factors contribute to the reliability of these devices. The low backlash and large torque capacity of a planetary gear motor allow them to be used in a wide range of applications.

Planetary gearboxes with electric motors

If you’re in the market for a new gearbox, you may have already heard about planetary gearboxes. The planetary gearbox is a high-efficiency, low-noise gearbox. CZPT manufactures high-torque planetary gearboxes with low backlash. They also make economy planetary gearboxes for lower loads. However, with so many different types available, choosing the right one for your needs can be challenging.
These planetary gearboxes are a compact alternative to conventional pinion-and-gear reducers. They offer high-speed reduction and high torque transfer, and are often used for space-constrained applications. But before you can understand how they work, you’ll need to understand a little about their construction. There are a few things to look for that you may not have noticed before.
The most common type of planetary gearbox is a PM81/LN. It features a set of DC brush motors with diameter 77mm, a stator, and two or more outer gears. Each of these gears is connected to an output shaft through a carrier. They can also be used with brakes, encoders, or a clutch. A planetary gearbox is one of the most reliable gearbox types on the market.

Planetary gearboxes with hydraulic motors

A planetary gearbox is a combination of two gears, the sun and the planets. The sun gear rotates at high speed, while the planets roll around and orbit around the ring gear. The output shaft has the same direction of rotation as the input shaft. The benefits of a planetary gearbox include high reduction ratios, efficiency, space-saving compactness, and higher overload capacity. These gears are also more stable and compact, and they do not suffer from self-locking properties.
Planetary gearboxes are a highly efficient way to power hydraulic lifts. They can be input via electric, hydraulic, or air motors. The drive arrangement can be mounted on a bare shaft, splined shaft, or a parallel keyed input shaft. Depending on the application, bespoke gearboxes can be manufactured with a variety of features and functions.
planetarygearbox

Planetary gearboxes with combustion engines

There are many different applications of planetary gear sets. The most common is the distribution of power between two wheels in a car’s drive axle. Four-wheel drives use two axle differentials, which are further augmented by a centre differential. Hybrid electric vehicles use summation gearboxes to distribute power from the combustion engine to the wheels and to an electric motor. Planetary gear sets also combine the two different types of motors to form one hybrid vehicle.
To understand how planetary gear sets work, it is important to understand the underlying mechanical principles. For example, Fig. 4.6 shows a stick diagram illustrating two planetary gear sets connected by a lever. The two levers are the same length, so the system is analogous to a single lever. When calculating the torque, it is essential to consider the lever diagram. Similarly, if two gear sets are connected by vertical links, the horizontal links must be horizontal.

China high quality Factory Wholesale 90 Degree Right Angle Precision Planetary Gear Reducer Servo Motor Gearbox     planetary gearbox efficiencyChina high quality Factory Wholesale 90 Degree Right Angle Precision Planetary Gear Reducer Servo Motor Gearbox     planetary gearbox efficiency
editor by czh

China best Sesame Series Mitsubishi Servo Motor Precision Planetary Gearbox Factory disadvantages of planetary gearbox

Warranty: 3 years
Applicable Industries: Servo Motor
Customized support: OEM
Gearing Arrangement: Planetary
Output Torque: Can be customized, Depended on the servo motor
Input Speed: Can be customized, Depended on the servo motor
Output Speed: Can be customized, Depended on the Ratio
Product name: Planetary Gearbox
Ratio: 9,12,15,16,20,25,30,32,40,50,64
Input interface: According to motor output
No-load torque at 20oC (Nm): ≤0.1Nm
Normal Input Speed: 3000r/min
Max. Input Speed: 6000r/min
Max. Radial Load: 480N
Max. Axial Load: 600N
Noise: ≤60db
Protection grade (IP): IP54
Packaging Details: Standard Export Package with Protection
Port: HangZhou, HangZhou

Product Nameplanetary gearbox
Brand NameNEWSTART
Applicable IndustriesServo Motor
Gearing ArrangementPlanetary
Ratio i9,12,15,16,20,25,30,32,40,50,64
Input interfaceAccording to motor output
Max. radial load (N)480
Max. axial load (N)600
Rated input speed (r/min)3000
Max. input speed (r/min)6000
Noise (db)≤60
Backlash – Class P2 (arcmin)≤12
No-load torque at 20oC (Nm)≤0.1
Operating temperature (℃)-15 to +90
Service life (h)≥20,000
Protection grade (IP)IP54
MOQ1
More Products Product Line Our Company Certifications Exhibition Packaging & Shipping FAQ Q: Are you a manufacturer or a trader? A: We are a professional factory with 16 years of production experience. Q: Are all motor types compatible with planetary reducers? A: Our planetary gear reducers are customized according to your motor mounting flange, all types of motors can be matched. Q: What is the warranty period of the product? A: The warranty period of the product is 18 months. Q: What is the delivery cycle of the product? A: The delivery time of general products is 20-25 days. Customized products in about 45 days. Please ask for specific delivery time before ordering. If you have other questions that are not clear, you are welcome to contact us.

Types, Applications, and Lubrication of Planetary Gearboxes

A Planetary Gearbox is a device that can be used in a variety of applications. Their reduction ratios depend on the number of teeth in each gear. In this article, we will discuss the types, applications, and lubrication of planetary gearboxes. Hopefully, this article will be of help to you. If not, you can check out this article and discover more about this fascinating machine. There are many different types of planetary gearboxes.
planetarygearbox

Applications of planetary gearboxes

The planetary gearbox is a popular option for applications requiring precise positioning. Applications of the planetary gearbox range from plastic machinery to agricultural equipment, from goods & personnel lifts to industrial robotics. Some of the industries that benefit from this type of gearbox include robotics, intra-logistics, robotics for industrial automation, and medical equipment. Increasing automation is also fueling the growth of the industrial planetary gearbox market in APAC.
The compact design of planetary gears makes them excellent for reducing load inertia and maximizing torque. However, some applications require additional lubrication for sustained performance or high speeds. CZPT uses CZPT in its planetary gearboxes. In addition, lubrication prevents gear wear and minimizes noise and vibration. The planetary gearbox is also easy to install, thanks to its low-mass-inertia design.
Another application of the planetary gearbox is in axles and transfer cases. The planetary gear architecture consists of a sun gear, also called the central gear, and a ring-gear with internal teeth that are concentric to the sun gear. The two gears are connected via a carrier, and the output shaft is positioned on the ring-gear carrier. The gearbox can be configured in a variety of ways, depending on the speed-ratio requirements.
The planetary gear train is similar to that of a solar system. It comprises a sun gear and two or more outer gears, ring gear and carrier assembly. In this configuration, the outer gears are connected via a carrier and a ring gear. The planet gears are in constant mesh with each other, and power applied to one of these members will rotate the whole assembly. They are a very efficient choice for many applications.

Types

There are three types of planetary gearboxes, depending on their performance and efficiency. The basic model is highly efficient and transmits up to 97% of power input. Depending on the speed and torque that need to be transmitted, planetary gearboxes are used in many different applications. A planetary gearbox can reduce the speed of a roller or produce a more precise level of movement. Using a planetary gearbox for your printing press, for example, will maximize your gear transmission ratio.
This market research report analyzes the factors influencing the market for Planetary Gearboxes, as well as their sales and revenues. It also highlights industry trends and details the competitive landscape. It also provides a comprehensive analysis of the Planetary Gearbox industry and its drivers and restraints. It provides detailed information on the market size and future growth prospects. The study also includes an extensive discussion of the competitive landscape, identifying the top companies and key market players.
A planetary gearbox is often used to manufacture complicated machines. These gears are usually made of high-quality steel, which makes them extremely durable. Planetary gearboxes can also be used in the production of heavy machine elements. There are many benefits of a planetary gearbox, including its compactness and low mass inertia. The main advantage of a planetary gearbox is its ability to distribute torque. Compared to a normal gearbox, planetary gearboxes can provide torque that is nearly three times higher than its conventional counterpart.
The three main types of planetary gears are the single-stage, compound, and multi-stage. The general concept of a planetary gear is referred to as a compound planetary gear. This means that planetary gears are made up of one of these three basic structures: a meshed-planet structure, a shaft, and a multi-stage structure. This type of gear has multiple stages and is particularly useful for fast-dynamic laser cutting machines.
planetarygearbox

Design

A planetary gearbox is similar to a car’s transmission. All of its gears must have a certain number of teeth and be spaced equally apart. The teeth of a planet must mesh with the gears of the ring and sun to be functional. The number of teeth needed will depend on the number of planets and their spacing. This equation is a good starting point for designing a gearbox.
The dynamic properties of planetary gears are investigated using a parametric model. The stiffness of the mesh changes as the number of gear tooth pairs in contact varies during the gear rotation. Small disturbances in design realizations cause nonlinear dynamics, which results in noise and vibrations in the gear transmission. A mathematical system describing this process is developed using the basic principles of analytical mechanics. This mathematical model can be used to optimize any planetary gear.
This analysis assumes that the sun gear and planet gears have the same design modulus, which is a fundamental requirement of any mechanical gear. In reality, the ratio of these two gears is 24/16 versus -3/2. This means that a planetary gearbox’s output torque is 41.1 times the input torque. Considering this factor, we can make an accurate estimate of the total torque. The planetary gears are mounted face-to-face and connected to an electric motor.
A planetary gear set has to have a certain number of teeth that are odd or even. One way to overcome this issue is to double the number of teeth on the sun gear and the annulus gear. This will also solve irregularities. Another way to design a planetary gear set is to use the appropriate diametral pitch and module. There are many planetary gear sets available on the market, so it pays to understand the differences.

Lubrication

Lubrication for Planetary Gearboxes is important for the smooth functioning of the gear. Planetary gears are subjected to high levels of friction and heat, so they require regular lubrication. The gear housing is designed to dissipate heat away from the gear, but heat can still enter the gear, which can result in a poor lubrication condition. The best lubrication solution is synthetic oil, and the gear should be refilled with a minimum of 30 percent oil.
When lubricating a planetary gearbox, it is important to note that hydraulic oil is not suitable for planetary gearboxes, which cost over $1500. Hydraulic oil does not have the same viscosity and behavior with temperature fluctuations, making it less effective. The planetary gearbox may also overheat if a hose is not provided for case draining. A case drain hose is essential to prevent this from happening, because hot oil can cause overheating of the gearbox and damage to the gears.
Oil delivery conduits are positioned between each pair of planet gears. Each oil delivery conduit directs fresh oil toward the sun gear and the planet gear. The oil then disperses and exits from the gear train with considerable tangential velocity. The oil is redirected into a collection channel (56). The preferred embodiment uses herringbone gears, which pump oil axially outward into the channels.
The best way to choose the right type of lubrication is to consider its viscosity. Too high a viscosity will prevent the lubricant from flowing properly, which will cause metal-to-metal contact. The oil must also be compatible with the gearbox temperature. A suitable viscosity will increase the efficiency of the gearbox and prevent downtime. A reliable gearbox will ultimately result in higher profits and fewer costs.
planetarygearbox

Applications

This report examines the Industrial Planetary Gearbox Market and its current trends. It identifies the pre and post-COVID-19 effects of the industry. It outlines the advantages and disadvantages of the industrial planetary gearbox market. The report also explains the diverse financing resources and business models of the market. It includes the key players in the industry. Hence, it is essential to read this report carefully.
The report includes analysis and forecasts of the global market for planetary gearbox. It includes the product introductions, key business factors, regional and type segments, and end-users. It covers the sales and revenue of the market for each application field. The report also includes the regional and country-level market data. It also focuses on the market share of the key companies operating in the industry. It covers the competitive scenario in the global planetary gearbox market.
Another popular application for planetary gearboxes is in the toy industry. It is possible to design toys that look stunning with planetary gear systems. In addition to toys, clock makers also benefit from the planetary arrangement. In addition to producing a good-looking clock, this gearbox can reduce inertia and improve its efficiency. The planetary gearbox is easy to maintain, which makes it a good choice for clock applications.
In addition to traditional gear reductions, planetary gears are also used for 3D printing. Their huge gear ratio makes 3D printing easier. Furthermore, planetary gears are used to drive stepper motors, which turn much faster and produce a desired output. There are numerous industrial uses for planetary gearboxes. This article has explored a few of the most common ones. And don’t forget to explore their uses.

China best Sesame Series Mitsubishi Servo Motor Precision Planetary Gearbox Factory     disadvantages of planetary gearboxChina best Sesame Series Mitsubishi Servo Motor Precision Planetary Gearbox Factory     disadvantages of planetary gearbox
editor by czh

China Best Sales Hot selling High Precision Low Backlash Noise Helical Planetary Speed Gear Reduction Reducer Gearbox For Servo Motor worm gear winch

Warranty: 1year
Applicable Industries: CNC, Printing machine, Food packaging, manipulator, Packaging machinery, Laser Cutting Machine, Autamation
Weight (KG): 3 KG
Customized support: OEM
Gearing Arrangement: Planetary
Output Torque: 48.3-22920N.m
Input Speed: 3000RPM
Output Speed: 1000-3000rpm
Noise level: ≤65 dB
Gear Ratio: 3,4,5,7,10
Efficiency: 94%~98%
Backlash: ≤7-10 arcmin
Model Number: DVF60

Specification

itemvalue
Warranty1year
Applicable IndustriesCNC, High torque transmission efficiency drive shaft jaw flexible coupling for reducer gearbox Printing machine, Food packaging, manipulator, Packaging machinery, Laser Cutting Machine, Automation
Customized supportOEM
Gearing ArrangementPlanetary
Output Torque48.3-22920N.m
Input Speed3000RPM
Output Speed1000-3000rpm
Place of OriginZheJiang , China
Brand NameKAISIDUNER
Noise level≤65 dB
Gear Ratio3,4,5,7, High quality hollow harmonic drive gearbox 10
Efficiency94%~98%
Backlash≤7-10 arcmin
Model NumberDVF60
Product Dimensions Main Features High rigidity:Carburizing, carbon nitrogen co-carburizing, brilliant quenching heat treatment, the advantages of high productivity, good quenching.SCM415 steel from Japan is used as raw material. High precision:Adopt Japanese CZPT and HAMAYI advanced equipment.Quality and technology are strictly controlled. High torque:(1)Front shell and tooth ring adopt integral design(2)Integrated design of planetary frame and output shaft(3)Bearing long span design, ensure the output load capacity(4) Full needle rolling, increase contact surface, increase output torque(5)Input flange interchangeability, ensure the exchange cycle(6) Modular design of motor connection plate and axle liner POWER PRODUCER EXHIBITION EVENTS FAQ 1.Q:What information should i tell you to confirm the planetary gearbox?A:Model/Size,B:Ratio and output torque, High torque hydraulic motor planetary gearbox industrial gearbox C:Powe and flange type,D:Shaft Direction,E:Order quantity.2.What type of payment methods do you accept?A:T/T,B:B/L,C:CASH;3.What’s your warranty?One year. 4.How to delivery?A:By sea- Buyer appoints forwarder,or our sales team finds suitable forwarder for buyers.By air-Buyer offers collect express account,or our sales team fingds suitable express for buyers.(Mostly for sample) Other- We arrange to delivery goods to some place in China appointed by buyers.5.Can you make OEM/ODM order? Yes,we have rich experience on OEM/ODM order and like sign Non-disclosure Agreement before sample making;

How to Compare Different Types of Spur Gears

When comparing different types of spur gears, there are several important considerations to take into account. The main considerations include the following: Common applications, Pitch diameter, and Addendum circle. Here we will look at each of these factors in more detail. This article will help you understand what each type of spur gear can do for you. Whether you’re looking to power an electric motor or a construction machine, the right gear for the job will make the job easier and save you money in the long run.
Gear

Common applications

Among its many applications, a spur gear is widely used in airplanes, trains, and bicycles. It is also used in ball mills and crushers. Its high speed-low torque capabilities make it ideal for a variety of applications, including industrial machines. The following are some of the common uses for spur gears. Listed below are some of the most common types. While spur gears are generally quiet, they do have their limitations.
A spur gear transmission can be external or auxiliary. These units are supported by front and rear casings. They transmit drive to the accessory units, which in turn move the machine. The drive speed is typically between 5000 and 6000 rpm or 20,000 rpm for centrifugal breathers. For this reason, spur gears are typically used in large machinery. To learn more about spur gears, watch the following video.
The pitch diameter and diametral pitch of spur gears are important parameters. A diametral pitch, or ratio of teeth to pitch diameter, is important in determining the center distance between two spur gears. The center distance between two spur gears is calculated by adding the radius of each pitch circle. The addendum, or tooth profile, is the height by which a tooth projects above the pitch circle. Besides pitch, the center distance between two spur gears is measured in terms of the distance between their centers.
Another important feature of a spur gear is its low speed capability. It can produce great power even at low speeds. However, if noise control is not a priority, a helical gear is preferable. Helical gears, on the other hand, have teeth arranged in the opposite direction of the axis, making them quieter. However, when considering the noise level, a helical gear will work better in low-speed situations.

Construction

The construction of spur gear begins with the cutting of the gear blank. The gear blank is made of a pie-shaped billet and can vary in size, shape, and weight. The cutting process requires the use of dies to create the correct gear geometry. The gear blank is then fed slowly into the screw machine until it has the desired shape and size. A steel gear blank, called a spur gear billet, is used in the manufacturing process.
A spur gear consists of two parts: a centre bore and a pilot hole. The addendum is the circle that runs along the outermost points of a spur gear’s teeth. The root diameter is the diameter at the base of the tooth space. The plane tangent to the pitch surface is called the pressure angle. The total diameter of a spur gear is equal to the addendum plus the dedendum.
The pitch circle is a circle formed by a series of teeth and a diametrical division of each tooth. The pitch circle defines the distance between two meshed gears. The center distance is the distance between the gears. The pitch circle diameter is a crucial factor in determining center distances between two mating spur gears. The center distance is calculated by adding the radius of each gear’s pitch circle. The dedendum is the height of a tooth above the pitch circle.
Other considerations in the design process include the material used for construction, surface treatments, and number of teeth. In some cases, a standard off-the-shelf gear is the most appropriate choice. It will meet your application needs and be a cheaper alternative. The gear will not last for long if it is not lubricated properly. There are a number of different ways to lubricate a spur gear, including hydrodynamic journal bearings and self-contained gears.
Gear

Addendum circle

The pitch diameter and addendum circle are two important dimensions of a spur gear. These diameters are the overall diameter of the gear and the pitch circle is the circle centered around the root of the gear’s tooth spaces. The addendum factor is a function of the pitch circle and the addendum value, which is the radial distance between the top of the gear tooth and the pitch circle of the mating gear.
The pitch surface is the right-hand side of the pitch circle, while the root circle defines the space between the two gear tooth sides. The dedendum is the distance between the top of the gear tooth and the pitch circle, and the pitch diameter and addendum circle are the two radial distances between these two circles. The difference between the pitch surface and the addendum circle is known as the clearance.
The number of teeth in the spur gear must not be less than 16 when the pressure angle is twenty degrees. However, a gear with 16 teeth can still be used if its strength and contact ratio are within design limits. In addition, undercutting can be prevented by profile shifting and addendum modification. However, it is also possible to reduce the addendum length through the use of a positive correction. However, it is important to note that undercutting can happen in spur gears with a negative addendum circle.
Another important aspect of a spur gear is its meshing. Because of this, a standard spur gear will have a meshing reference circle called a Pitch Circle. The center distance, on the other hand, is the distance between the center shafts of the two gears. It is important to understand the basic terminology involved with the gear system before beginning a calculation. Despite this, it is essential to remember that it is possible to make a spur gear mesh using the same reference circle.

Pitch diameter

To determine the pitch diameter of a spur gear, the type of drive, the type of driver, and the type of driven machine should be specified. The proposed diametral pitch value is also defined. The smaller the pitch diameter, the less contact stress on the pinion and the longer the service life. Spur gears are made using simpler processes than other types of gears. The pitch diameter of a spur gear is important because it determines its pressure angle, the working depth, and the whole depth.
The ratio of the pitch diameter and the number of teeth is called the DIAMETRAL PITCH. The teeth are measured in the axial plane. The FILLET RADIUS is the curve that forms at the base of the gear tooth. The FULL DEPTH TEETH are the ones with the working depth equal to 2.000 divided by the normal diametral pitch. The hub diameter is the outside diameter of the hub. The hub projection is the distance the hub extends beyond the gear face.
A metric spur gear is typically specified with a Diametral Pitch. This is the number of teeth per inch of the pitch circle diameter. It is generally measured in inverse inches. The normal plane intersects the tooth surface at the point where the pitch is specified. In a helical gear, this line is perpendicular to the pitch cylinder. In addition, the pitch cylinder is normally normal to the helix on the outside.
The pitch diameter of a spur gear is typically specified in millimeters or inches. A keyway is a machined groove on the shaft that fits the key into the shaft’s keyway. In the normal plane, the pitch is specified in inches. Involute pitch, or diametral pitch, is the ratio of teeth per inch of diameter. While this may seem complicated, it’s an important measurement to understand the pitch of a spur gear.
gear

Material

The main advantage of a spur gear is its ability to reduce the bending stress at the tooth no matter the load. A typical spur gear has a face width of 20 mm and will fail when subjected to 3000 N. This is far more than the yield strength of the material. Here is a look at the material properties of a spur gear. Its strength depends on its material properties. To find out what spur gear material best suits your machine, follow the following steps.
The most common material used for spur gears is steel. There are different kinds of steel, including ductile iron and stainless steel. S45C steel is the most common steel and has a 0.45% carbon content. This type of steel is easily obtainable and is used for the production of helical, spur, and worm gears. Its corrosion resistance makes it a popular material for spur gears. Here are some advantages and disadvantages of steel.
A spur gear is made of metal, plastic, or a combination of these materials. The main advantage of metal spur gears is their strength to weight ratio. It is about one third lighter than steel and resists corrosion. While aluminum is more expensive than steel and stainless steel, it is also easier to machine. Its design makes it easy to customize for the application. Its versatility allows it to be used in virtually every application. So, if you have a specific need, you can easily find a spur gear that fits your needs.
The design of a spur gear greatly influences its performance. Therefore, it is vital to choose the right material and measure the exact dimensions. Apart from being important for performance, dimensional measurements are also important for quality and reliability. Hence, it is essential for professionals in the industry to be familiar with the terms used to describe the materials and parts of a gear. In addition to these, it is essential to have a good understanding of the material and the dimensional measurements of a gear to ensure that production and purchase orders are accurate.

China Best Sales Hot selling High Precision Low Backlash Noise Helical Planetary Speed Gear Reduction Reducer Gearbox For Servo Motor     worm gear winchChina Best Sales Hot selling High Precision Low Backlash Noise Helical Planetary Speed Gear Reduction Reducer Gearbox For Servo Motor     worm gear winch