Product Description
Reliability
DT14 adopts a fully helical gear and planetary gearbox structure, with low noise and strong load-bearing capacity;
The pressure resistance and overheating resistance of the friction material of the synchronizer are leading domestically, and the lifespan of the synchronizer has been extended to match that of the gearbox assembly;
The DT14 assembly has undergone 2 million kilometers of road validation, and the B10 has a lifespan of 1.6 million kilometers. The entire series can be equipped with hydraulic retarders to ensure driving safety.
Convenience
Single H control of the top cover and front and rear auxiliary box pneumatic shift mode, achieving step-by-step gear shifting and jumping operation, with clear gear positions and convenient operation;
Self enhancing double cone synchronizer reduces shifting force by 2-3 times compared to synchronizers of the same level, making shifting more lightweight and giving a sedan like feel;
The ultra long oil change cycle of 300000 kilometers is at the leading level in the industry, making it easier for users to use.
High efficiency
Adopting a dual lubrication method of active lubrication and splash lubrication to lubricate key components such as bearings, synchronizers, and gears, providing more complete lubrication and lower friction losses;
By using an independent external oil cooling system, the problem of high temperature of the gearbox assembly in special road conditions (climbing long slopes) is avoided, ensuring stable operation of components, higher transmission efficiency, and prolonging oil change HangZhouage and gearbox service life.
| Transmission product characteristic parameters | |
| Torque (N · m) | 2000-3200 |
| Transmission efficiency | 97.4% |
| Noise (dB) | 86 |
| Net weight (kg) | 302 |
| Oil change HangZhouage (km) | 300 thousand |
| Speed ratio | DD/OD(DD:1-16.41,3.22-15.06 OD:0.8-13.16,2.58-12.09) |
| B10 Durability (km) | 1 million 200 thousand |
Here’s why our products stand out:
1. Extensive Product Range: We offer a diverse selection of buses, school buses, andspecial purpose vehicles to cater to various transportation needs. Whether yourequire standard buses for public transport, specialized school buses withenhanced safety features, or custom-built special purpose vehicles for specificapplications, we have a solution to meet your requirements.
2. Superior Quality and Reliability: Our vehicles are manufactured to the highestindustry standards, ensuring exceptional quality, reliability, and longevity. Wecollaborate with reputable manufacturers and conduct rigorous quality controlchecks to deliver products that exceed customer expectations. Our commitmentto CZPT is reflected in every vehicle we offer.
3. Cutting-Edge Technology: We incorporate advanced technologies andinnovations into our vehicles to enhance performance, efficiency, and safety.From fuel-efficient engines and intelligent control systems to state-of-the-art
safety features and eco-friendly designs, our products are at the forefront ofautomotive technology.
4. Customization Options: We understand that every client has unique needs ancpreferences, Therefore, we provide customization options to tailor our vehiclesaccording to specific requirements. Whether it’s seating capacity, interiorconfigurations, accessibility features, or branding elements, we work closely withour clients to deliver personalized solutions.
5. Focus on Safety: Safety is our top priority. Our school buses are designed withcomprehensive safety features, including reinforced structures, advanced brakincsystems, and integrated safety technologies. We prioritize passenger and driversafety to provide peace of mind for both educational institutions and parents.
6. Exceptional After-Sales Service: Our commitment to customer satisfactionextends beyond the purchase. We provide reliable after-sales service andsupport, including spare parts availability, technical assistance, and maintenanceguidance. Our dedicated team ensures that our customers receive prompt andefficient service throughout the ownership lifecycle.
FAQ
1.What do you need to provide a quote?
Please kindly send us the drawing of your product. Details below should be included,
A.Materials B. Surface Finish C. Tolerance D. Quantity
(Please be noted that these are essential for our quoting. We couldn’t quote the specific
price without any of them.).
2.When can I get the price?
Our professional sales team will feedback your RFQ within 12hours, and give you the Quotation within 48hours max. if the drawing and specification is all in details.
3.How can I get the sample to check your quality?
After price confirmation, you can require for samples to check our product’s quality. If you just need a blank sample to check the manufacturing quality, we will provide you sample after the sample order confirmed.
4.What’s the lead time for Mould and samples ?
For normal project, we can complete Mould and supply the 1st article sample within 30 to 40days.
For urgently project, we can complete the Mould and Sample within 20days max.
5.What’s the payment terms for Order ?
For Mould/tooling and sample : 50% deposit pay by Order, rest 50% pay after sample approval.
For production Order for new Customers : we request 30% down payment, rest 70% pay by copy of Original B/L copy. For long lasting regular customer, we can give better payment terms, such as 100% pay after delivery or by B/L copy.
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| After-sales Service: | 1 Year |
|---|---|
| Warranty: | 1 Year |
| Certification: | TUV, GS |
| Torque (N · M): | 2000-3200 |
| Transmission Efficiency: | 97.4% |
| Noise (dB): | 86 |
| Customization: |
Available
| Customized Request |
|---|

Planetary Gearbox
This article will explore the design and applications of a planetary gearbox. The reduction ratio of a planetary gearbox is dependent on the number of teeth in the gears. The ratios of planetary gearboxes are usually lower than those of conventional mechanical transmissions, which are mainly used to drive engines and generators. They are often the best choice for heavy-duty applications. The following are some of the advantages of planetary gearboxes.
planetary gearboxes
Planetary gearboxes work on a similar principle to solar systems. They rotate around a center gear called the sun gear, and two or more outer gears, called planet gears, are connected by a carrier. These gears then drive an output shaft. The arrangement of planet gears is similar to that of the Milky Way’s ring of planets. This arrangement produces the best torque density and stiffness for a gearbox.
As a compact alternative to normal pinion-and-gear reducers, planetary gearing offers many advantages. These characteristics make planetary gearing ideal for a variety of applications, including compactness and low weight. The efficiency of planetary gearing is enhanced by the fact that ninety percent of the input energy is transferred to the output. The gearboxes also have low noise and high torque density. Additionally, their design offers better load distribution, which contributes to a longer service life.
Planetary gears require lubrication. Because they have a smaller footprint than conventional gears, they dissipate heat well. In fact, lubrication can even lower vibration and noise. It’s also important to keep the gears properly lubricated to prevent the wear and tear that comes with use. The lubrication in planetary gears also helps keep them operating properly and reduces wear and tear on the gears.
A planetary gearbox uses multiple planetary parts to achieve the reduction goal. Each gear has an output shaft and a sun gear located in the center. The ring gear is fixed to the machine, while the sun gear is attached to a clamping system. The outer gears are connected to the carrier, and each planetary gear is held together by rings. This arrangement allows the planetary gear to be symmetrical with respect to the input shaft.
The gear ratio of a planetary gearbox is defined by the sun gear’s number of teeth. As the sun gear gets smaller, the ratio of the gear will increase. The ratio range of planetary gears ranges from 3:1 to ten to one. Eventually, however, the sun gear becomes too small, and the torque will fall significantly. The higher the ratio, the less torque the gears can transmit. So, planetary gears are often referred to as “planetary” gears.
Their design
The basic design of a Planetary Gearbox is quite simple. It consists of three interconnecting links, each of which has its own torque. The ring gear is fixed to the frame 0 at O, and the other two are fixed to each other at A and B. The ring gear, meanwhile, is attached to the planet arm 3 at O. All three parts are connected by joints. A free-body diagram is shown in Figure 9.
During the development process, the design team will divide the power to each individual planet into its respective power paths. This distribution will be based on the meshing condition of all gears in the system. Then, the design team will proceed to determine the loads on individual gear meshes. Using this method, it is possible to determine the loads on individual gear meshes and the shape of ring gear housing.
Planetary Gearboxes are made of three gear types. The sun gear is the center, which is connected to the other two gears by an internal tooth ring gear. The planet pinions are arranged in a carrier assembly that sets their spacing. The carrier also incorporates an output shaft. The three components in a Planetary Gearbox mesh with each other, and they rotate together as one. Depending on the application, they may rotate at different speeds or at different times.
The planetary gearbox’s design is unique. In a planetary gearbox, the input gear rotates around the central gear, while the outer gears are arranged around the sun gear. In addition, the ring gear holds the structure together. A carrier connects the outer gears to the output shaft. Ultimately, this gear system transmits high torque. This type of gearbox is ideal for high-speed operations.
The basic design of a Planetary Gearbox consists of multiple contacts that must mesh with each other. A single planet has an integer number of teeth, while the ring has a non-integer number. The teeth of the planets must mesh with each other, as well as the sun. The tooth counts, as well as the planet spacing, play a role in the design. A planetary gearbox must have an integer number of teeth to function properly.
Applications
In addition to the above-mentioned applications, planetary gearing is also used in machine tools, plastic machinery, derrick and dock cranes, and material handling equipments. Further, its application is found in dredging equipment, road-making machinery, sugar crystallizers, and mill drives. While its versatility and efficiency makes it a desirable choice for many industries, its complicated structure and construction make it a complex component.
Among the many benefits of using a planetary gearbox, the ability to transmit greater torque into a controlled space makes it a popular choice for many industries. Moreover, adding additional planet gears increases the torque density. This makes planetary gears suitable for applications requiring high torque. They are also used in electric screwdrivers and turbine engines. However, they are not used in everything. Some of the more common applications are discussed below:
One of the most important features of planetary gearboxes is their compact footprint. They are able to transmit torque while at the same time reducing noise and vibration. In addition to this, they are able to achieve a high speed without sacrificing high-quality performance. The compact footprint of these gears also allows them to be used in high-speed applications. In some cases, a planetary gearbox has sliding sections. Some of these sections are lubricated with oil, while others may require a synthetic gel. Despite these unique features, planetary gears have become common in many industries.
Planetary gears are composed of three components. The sun gear is the input gear, whereas the planet gears are the output gears. They are connected by a carrier. The carrier connects the input shaft with the output shaft. A planetary gearbox can be designed for various requirements, and the type you use will depend on the needs of your application. Its design and performance must meet your application’s needs.
The ratios of planetary gears vary depending on the number of planets. The smaller the sun gear, the greater the ratio. When planetary stages are used alone, the ratio range is 3:1 to 10:1. Higher ratios can be obtained by connecting several planetary stages together in the same ring gear. This method is known as a multi-stage gearbox. However, it can only be used in large gearboxes.
Maintenance
The main component of a planetary gearbox is the planetary gear. It requires regular maintenance and cleaning to remain in top shape. Demand for a longer life span protects all other components of the gearbox. This article will discuss the maintenance and cleaning procedures for planetary gears. After reading this article, you should know how to maintain your planetary gearbox properly. Hopefully, you can enjoy a longer life with your gearbox.
Firstly, it is important to know how to properly lubricate a planetary gearbox. The lubricant is essential as gears that operate at high speeds are subject to high levels of heat and friction. The housing of the planetary gearbox should be constructed to allow the heat to dissipate. The recommended oil is synthetic, and it should be filled between 30 and 50 percent. The lubricant should be changed at least every six months or as needed.
While it may seem unnecessary to replace a planetary gearbox, regular servicing will help it last a long time. A regular inspection will identify a problem and the appropriate repairs are needed. Once the planetary gearbox is full, it will plug with gear oil. To avoid this problem, consider getting the unit repaired instead of replacing the gearbox. This can save you a lot of money over a new planetary gearbox.
Proper lubrication is essential for a long life of your planetary gearbox. Oil change frequency should be based on oil temperature and operating speed. Oil at higher temperatures should be changed more frequently because it loses its molecular structure and cannot form a protective film. After this, oil filter maintenance should be performed every few months. Lastly, the gearbox oil needs to be checked regularly and replaced when necessary.


editor by Dream 2024-05-02
China manufacturer Kfrs Series Gearbox Flail Mower Agricultural for Flail Mower Transmission DC Motor Planetary Speed Reducer Car Gearboxes Geared Motor planetary gearbox design
Product Description
gearbox flail mower Agricultural for flail mower transmission dc motor planetary speed reducer car gearboxes
Application of gearbox
Gearboxes are used in a wide variety of applications, including:
- Automotive: Gearboxes are used in cars, trucks, and other vehicles to transmit power from the engine to the wheels.
- Machine tools: Gearboxes are used in machine tools to control the speed and torque of the cutting tools.
- Industrial equipment: Gearboxes are used in a variety of industrial equipment, such as conveyors, cranes, and elevators.
- Wind turbines: Gearboxes are used in wind turbines to convert the rotational energy of the turbine blades into electricity.
- Robotics: Gearboxes are used in robots to control the speed and torque of the motors.
- Aerospace: Gearboxes are used in aircraft and spacecraft to transmit power from the engines to the control surfaces.
These are just a few of the many applications of gearboxes. Gearboxes are an essential part of many machines and devices, and they are used in a wide variety of industries.
Here are some of the benefits of using a gearbox:
- Increased speed and range: A gearbox can be used to increase the speed or range of a machine. For example, a gearbox can be used to increase the speed of a conveyor belt or to increase the range of a robotic arm.
- Reduced effort required to operate: A gearbox can be used to reduce the effort required to operate a machine. For example, a gearbox can be used to make it easier to pedal a bicycle or to make it easier to lift a heavy object.
- Increased efficiency: A gearbox can be used to improve the efficiency of a machine. For example, a gearbox can be used to reduce the amount of energy that is lost in friction.
- Improved safety: A gearbox can be used to enhance the safety of a machine. For example, a gearbox can be used to prevent a device from over-speeding or from overloading.
If you are looking for a way to improve the speed, range, efficiency, or safety of a machine, then a gearbox is a great option.
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| Application: | Motor, Electric Cars, Motorcycle, Machinery, Marine, Toy, Agricultural Machinery, Car |
|---|---|
| Function: | Distribution Power, Clutch, Change Drive Torque, Change Drive Direction, Speed Changing, Speed Reduction, Speed Increase |
| Layout: | Three-Ring |
| Hardness: | Hardened Tooth Surface |
| Installation: | Torque Arm Type |
| Step: | Stepless |
| Samples: |
US$ 9999/Piece
1 Piece(Min.Order) | |
|---|
| Customization: |
Available
| Customized Request |
|---|

The Basics of a Planetary Gearbox
The basic model of a planetary gearbox is a highly efficient transmission that transmits nearly ninety percent of the power it receives. The basic planetary gearbox comes in three basic types: Inline, Helical, and Spur. Below, we will discuss the differences between each of them and which one is better for your needs. A planetary gearbox is an important part of any engine and may be the perfect choice for your vehicle.
Inline planetary gearbox
An inline planetary gearbox has an inline arrangement of gears that enables the transfer of power. Its design makes it stable and reliable, and the space and weight-saving benefits make it a popular choice for many applications. Planetary gearboxes have low inertia, high torque, and a wide range of reduction ratios, which make them a versatile choice for many industries. To find out more about this type of gearbox, read about its construction and specifications.
A planetary gearbox is composed of two parts: a sun gear (also called the central or input gear), and two planet gears (also called outer gears). These gears are connected to each other via a carrier. In order to get the best performance from your gearbox, it’s important to find a model with the features and benefits required for your application. Also, be sure to check out the delivery time, global availability, and customer service of your selected constructor. A few constructors are faster than others and have the ability to respond quickly, while others can deliver every single planetary gearbox out of stock.
Whether you’re using an inline planetary gearbox for your car’s transmission, or you’re building a new machine, it’s important to choose the right size for your application. The most common ratio is five:1, but an inline gearbox can be as high as 1000:1! The torque range is between 250-950 lb-in for continuous torque, and up to 5800 lb-in for yield torque. Some companies even offer custom shafts if you need them to fit a specific application.
Inline planetary gearboxes have a high ratio of helical rotation and are useful for applications where space is limited. Their low-backlash design allows them to handle high torques and high accelerations without backlash. Despite their compact size, planetary gear systems also have high single-stage reduction ratios, a feature that makes them ideal for a variety of industrial applications. They can also be connected for high reduction ratios.
An inline planetary gearbox can be used in many applications, from small tools to heavy industrial machinery. Its basic design includes three components: an input gear pair, an output gear pair, and a stationary position. Some planetary gearbox designs also include additional gear sets that can provide a slight offset between input and output. A planetary gearbox may also contain multiple bearings, which make the assembly more robust and reliable.
Inline planetary gear reducers are commonly used in industrial settings to slow down an electric motor. They are able to multiply torque, which means they can reduce the input speed to a level where the mechanical devices inside the motor can function properly. This type of gear reducer also has a low clearance, which makes it ideal for machines with high torque. However, you should consider the amount of torque required in your application before you make a purchase.
Helical planetary gearbox
A helical planetary gearbox is a type of mechanical system. The gears are connected by joints to the carrier that holds the planets stationary. The sun gear serves as an input to the other gears, and the planet gears rotate at a rate that depends on the number of teeth in each gear. The ratio between these gears is -Ns/Np, and the number of teeth in the ring is N r, N s, and N p.
Another type of planetary gearbox uses multiple helical axes to distribute the load. This design also offers high stiffness and low backlash, which is important for applications involving frequent start-stop cycles and rotational direction changes. It also features a compact design and low mass inertia. A helical planetary gearbox can be used for a wide range of applications. Listed below are some of the benefits of helical gear technology.
The basic design of a helical planetary gear is based on the principle of stepping planets. This concept eliminates the need for timing marks and restrictive assembly conditions. The planetary gear’s helical shape can be modified to achieve a greater transmission ratio in an equal or smaller volume. For example, a 50-T ring gear will yield the same effect as a 100-T ring gear.
In addition to the helical axis, a helical planetary gearbox also has a wide variety of secondary features that are critical to torque transmission. For instance, compact needle roller bearings are appropriate for a helical planetary gearbox because of their low-profile design and small space. However, a tapered roller bearing is better suited to handling high axial forces. In general, a helical planetary gearbox will have a higher efficiency rate and lower noise levels.
A helical planetary gearbox will have a number of components that can vary in size and shape. They will include a sun gear and many planetary parts. The central sun gear will take a low-torque input and will run multiple external gears to increase the torque and speed. This basic model of a planetary gearbox is highly efficient, transferring 97% of the power input. There are three main types of planetary gearboxes: the cylindrical planetary gearbox, the helical planetary gearbox, and the helical wormwheel.
The CZPT is a good example of an entry-level helical planetary gearbox. It is extremely reliable and aimed at providing torque in quiet applications with high precision. The Access series is another option, which is designed to meet the needs of the low-backlash planetary gearbox market. It features helical planetary gears with five to eight arc-minutes backlash, and is built on a monobloc housing.
A helical planetary gearbox is widely used in 3D printing. They are lightweight and can provide a high gear ratio. In addition to their low weight and high efficiency, some people have installed them into 3D printers to improve the accuracy of their designs. And in addition to 3D printing, helical gears are used in many industrial applications. If you’re thinking about purchasing one, you should know what the benefits are.
Spur planetary gearbox
There are many advantages to a spur planetary gearbox, from its compact design and low cost to its unmatched power transmission capacity per unit volume. Planetary gears have high efficiency per stage and can achieve up to 95% efficiency, depending on the ratio. Planet gears are mounted on a joint carrier, and the output rotation speed is slower than the drive rotation speed, which leads to increased torque. The higher the gear wheels, the more torque the unit can produce.
A spur planetary gearbox incorporates multiple other gear sets that must have helical teeth. These other gear sets must be helical, and the motor must be aligned with the driven parts. The spur gears are the most efficient type of planetary gear, as their teeth are symmetrical, which means no axial forces are generated. The difference between a spur and a planetary gearbox is its shape.
The right angle spur planetary gearbox is a versatile design with a spiral bevel gear that provides superior smoothness and quiet operation. This gearhead is case-hardened and ground to increase its efficiency. These gears can be purchased in 3-100 ratios. Spur planetary gearboxes can also have ISO rotary flanges, keyed shafts, DIN splines, or hollow compression connections.
A spur planetary gearbox utilizes spur gears around the circumference of the mechanism. The spur gears rotate between gears that have internal and external teeth. Because of this, the angular velocity of the spur gear differential carrier is the average of the ring gears and sun gears. A spur gearbox can also be considered a compound planetary gear. It is typically used for servo applications. Unlike spur gears, helical planetary gears are easier to maintain and have lower noise levels.
The most notable difference between a spur planetary gearbox and a planetary gearhead is the lubrication of the pinion and the spur gear head. A spur gear head is less complex, but cannot handle the same amount of load as a planetary gearhead. Both types can achieve the same backlash, but a planetary gearhead has better lubrication retention than a spur gear. It can run at higher speeds without excessive lubrication, while a spur gear drive is more efficient at low speeds. The reduction ratio of a planetary gearhead is near unity while that of a planetary gear head is many thousand to one.
A planetary gearbox has many applications. Plastic machinery, goods & personnel lifts, and machine tools are all prime examples of these types of gearing systems. Other industries that use these gears include wind turbines and sugar crystallizers, as well as steel and sugar mills. And of course, the use of planetary gears is not limited to these industries. It is used in many different ways, including slewing drives, mill drive, and derrick & dockyard cranes


editor by Dream 2024-04-24